The role of the energy equation in the fragmentation of protostellar discs during stellar encounters
نویسندگان
چکیده
In this paper, we use high-resolution smoothed particle hydrodynamics (SPH) simulations to investigate the response of a marginally stable self-gravitating protostellar disc to a close parabolic encounter with a companion discless star. Our main aim is to test whether close brown dwarfs or massive planets can form out of the fragmentation of such discs. We follow the thermal evolution of the disc by including the effects of heating due to compression and shocks and a simple prescription for cooling and find results that contrast with previous isothermal simulations. In the present case we find that fragmentation is inhibited by the interaction, due to the strong effect of tidal heating, which results in a strong stabilization of the disc. A similar behaviour was also previously observed in other simulations involving discs in binary systems. As in the case of isolated discs, it appears that the condition for fragmentation ultimately depends on the cooling rate.
منابع مشابه
Numerical simulations of protostellar encounters I . Star - disc encounters
It appears that most stars are born in clusters, and that at birth most stars have circumstellar discs which are comparable in size to the separations between the stars. Interactions between neighbouring stars and discs are therefore likely to play a key rôle in determining disc lifetimes, stellar masses, and the separations and eccentricities of binary orbits. Such interactions may also cause ...
متن کاملRadiation Feedback and Fragmentation in Massive Protostellar Cores
Star formation generally proceeds inside-out, with overdense regions inside protostellar cores collapsing rapidly and progressively less dense regions following later. Consequently, a small protostar will form early in the evolution of a core, and collapsing material will fall to the protostellar surface and radiate away its gravitational potential energy. The resulting accretion luminosity wil...
متن کاملRelativistic Stellar Models with Quadratic Equation of State
In this paper, we have obtained and presented new relativistic stellar configurations considering an anisotropic fluid distribution with a charge distribution and a gravitational potential Z(x) that depends on an adjustable parameter. The quadratic equation of state based on Feroze and Siddiqui viewpoint is used for the matter distribution. The new solutions can be written in terms of elementar...
متن کاملSelf-gravitating accretion discs
— I review recent progresses in the dynamics and the evolution of self-gravitating accretion discs. Accretion discs are a fundamental component of several astrophysical systems on very diverse scales, and can be found around supermassive black holes in Active Galactic Nuclei (AGN), and also in our Galaxy around stellar mass compact objects and around young stars. Notwithstanding the specific di...
متن کاملThe formation of a star cluster: predicting the properties of stars and brown dwarfs
We present results from the largest numerical simulation of star formation to resolve the fragmentation process down to the opacity limit. The simulation follows the collapse and fragmentation of a large-scale turbulent molecular cloud to form a stellar cluster and, simultaneously, the formation of circumstellar discs and binary stars. This large range of scales enables us to predict a wide var...
متن کامل